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Sediments are solid fragmented materials, such as silt, sand, gravel, chemical precipitates, and fossil
fragments, that are transported and deposited by water, ice, or wind or that accumulates through
chemical precipitation or secretion by organisms, and that forms layers on the Earth’s surface. The
study of sediment transport processes includes movement of rocks in a mountain as material diffusion
in water, among other processes. The focus here is to study sediment transport by the action of some
fluid such as in an ocean or a river. Accurate prediction of sediment transport rates is an important
element in morphological studies of river, coastal, and marine environments.
Sediment particles are transported by flow in one or a combination of ways: rolling or sliding on the
bed, surface creep; jumping into the flow and then resting on the bed, saltation; and supported by the
surrounding fluid during significant part of its motion, suspension. Nevertheless, sediment transport
is usually classified in two main modes: bed load and suspended load. The bed load is the part of the
total load which is travelling immediately above the bed and is supported by intergranular collisions
rather than fluid turbulence. The suspended load, on the other hand, is the part of the load which is
primarily supported by the fluid turbulence
Concerning bedload transport, one possible approach to model this type of transport is to use a
coupled system consisting on a hydrodynamical component, which describes the behavior of the fluid
and modeled using shallow water equations, and a morphodynamical component, which describes the
transport of the sediment and modeled by a transport equation. This leads to the Exner system [?]:
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) + gh∂x(zb + zf ) = 0,

∂tzb + ξ∂xqb(h, hu, zb) = 0.

The thickness of the fluid is denoted by h, and u represents the horizontal velocity. The thickness of
the sediment layer that is subject to bedload transport is given by zb. The porosity of the sediment
layer is given by γ, where ξ = (1 − γ)−1. Finally, the model depends on the definition of the solid
transport flux qb which is defined empirically. Among the most well-known formulas are the ones
given by Grass [3] and Meyer-Peter & Müller [4].
This model may be completed and generalized including suspended sediment transport and other more
complex effects (See [5, 1, 2]). More recent techniques use a multilayer approach to better describe
the process (See [6]).
All these models may be written under the formalism of hyperbolic systems of conservation laws with
source terms and non-conservative products. The numerical simulations of such systems may be done
under the general framework of path-conservative numerical schemes [7].
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